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Summary: This study examines the asymmetric adjustment of the consumer price 

index in Malaysia in response to changes in oil prices from January 2005 to December 

2022, at both aggregated and disaggregated levels. The findings of momentum 

threshold autoregressive cointegration tests indicate a cointegrating relationship 

between oil prices and the consumer price index in Malaysia. The consumer price 

index and its subcategories demonstrate varying speeds of adjustment back to 

equilibrium. Specifically, the aggregated consumer price index and the majority of the 

disaggregated consumer price indexes adjust relatively quickly back to equilibrium 

when oil prices fall, as opposed to when they rise. This suggests that the pass-through 

effect of oil prices on consumer prices is heterogeneous, with significant variations in 

the speed of adjustment across different consumer price subcategories. Consequently, 

these adjustment speeds should not be overlooked when considering the direction of 

monetary policy. 
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Oil price changes are often cited as a key cause of inflation, affecting economic activity 

through various channels. The supply channel, in particular, is significantly impacted 

by oil prices due to the economy’s heavy reliance on oil for transportation fuel. When 
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input costs, such as fuel costs, increase in the supply channel, producers may pass them 

on to consumers by raising the prices of end goods and services (Salisu et al. 2017). 

Consequently, there has been considerable empirical research on the oil price-inflation 

pass-through effect (Lacheheb and Sirag 2019; Mien 2022; Tiwari et al. 2019; Salisu 

et al. 2017; Asghar and Naveed 2015; Koh, Lim, and Sek 2020; Sek 2019). These 

studies, however, have analysed only the aggregated level of the consumer price index 

(CPI), leaving a crucial need to study how each component of the CPI responds to fuel 

price shocks at the disaggregated level (Kpodar and Liu 2022).   

In fact, the effects of oil prices have been reported to vary across CPI 

subcategories in different regions, such as Malaysia (Ibrahim and Said 2012; Sek 2017; 

Xuan and Chin 2015), Ghana (Ibrahim Anyars and Adabor 2023), India (Pradeep 

2022), Southeast Asia (i.e., Indonesia, Malaysia, and Thailand) (Husaini and Lean 

2021), Europe (i.e., France, Germany, Italy, and Spain) (Castro et al. 2017), and 

Kpodar and Liu's (2022) sample of 122 countries. Nevertheless, these studies limited 

their analysis to just a few subcategories of CPI rather than all possible categories. 

Additionally, researchers often overlook intrinsic asymmetric adjustment when 

examining the oil price-inflation nexus, leading to model misspecification and 

inappropriate policy decisions (Paleologou 2013). The rise and fall of oil prices have 

dissimilar impacts on economic performance (Sek 2017) and asymmetrical effects on 

product prices (Ibrahim and Said 2012), making asymmetric adjustment crucial to 

bridge the supplier-consumer gap and achieve overall price stability. As such, 

identifying the heterogeneous effect of oil prices on consumer prices is particularly 

important for policy actions aimed at addressing the overall inflationary pressure from 

oil price shocks. To do so, it is imperative to assume that the CPI and its subcategories 

adjust to their long-run equilibrium at different speeds in response to positive and 

negative oil price shocks.  

Given the aforementioned research paucities, this study complements existing 

literature on both aggregated and disaggregated CPI. Using a CPI dataset from the 

January 2005 to December 2022 period, we aimed to analyse the asymmetric 

adjustment of overall CPI and CPI subcategories in response to oil prices fluctuations 

in Malaysia. The momentum threshold autoregressive (MTAR) models proposed by 

Enders and Granger (1998) and Enders and Siklos (2001) were employed for this 

purpose, providing a clearer picture of the asymmetric adjustment phenomenon to add 

theoretical value and inform key policy decisions. 

 

 

1. The Malaysian Context 

Malaysia is considered the second-largest producer of oil and natural gas in Southeast 

Asia (EIA 2021). In 2021, the country produced approximately 508 thousand barrels 

of crude oil per day and exported approximately 209 thousand barrels of crude oil per 

day, recording a slight reduction from 280 thousand barrels exported per day the 

previous year (OECD 2023). Meanwhile, crude oil imports totaled about 131 thousand 

barrels per day in 2021, a notable drop from 248 thousand barrels per day in 2020 
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(OECD 2023). Although these statistics position Malaysia as a net exporter of crude 

oil, the nation has been predicted to become a net oil importer in the near future 

(Prambudia and Nakano 2012; Xuan and Chin 2015). This challenge is exacerbated by 

oil prices changes, which have varying impacts on a country’s economic inflation 

depending on whether it is an oil exporter or importer (Sek 2017; Koh, Lim, and Sek 

2020; Lacheheb and Sirag 2019). Therefore, despite its historical performance, 

Malaysia’s economy remains a point of concern. 

In line with this study’s objective to examine the effect of oil prices on 

aggregated and disaggregated CPI in Malaysia, we focused on the costs of purchasing 

associated with overall CPI as well as all 12 subcategories of CPI: Food and Non-

Alcoholic Beverages (CFOOD), Alcoholic Beverages and Tobacco (CALCO), 

Clothing and Footwear (CCLO), Housing, Water, Electricity, Gas and Other Fuels 

(CHOU), Furnishings, Household Equipment and Routine (CFUR), Health (CHEA), 

Transport (CTRAN), Communication (CCOM), Recreation Services and Culture 

(CREC), Education (CEDU), Restaurant and Hotels (CRES), and Miscellaneous 

Goods and Services (CMIS). Figure 1 displays the oil price and aggregated inflation 

for overall CPI, while Figures 2(a)-2(c) present the oil price and disaggregated 

inflation for the 12 subcategories in Malaysia from 2006 to 2022. 

Between 1991 and 1999, international oil prices were remarkably stable, 

averaging about $20 per barrel. However, since 2000, oil prices have experienced 

significant fluctuations. In 2008, the world oil price surged to US$97.33 per barrel, 

contributing to inflation reaching its highest level of 5.4%. The rise in inflation was 

primarily attributed to the CFOOD (8.9%) and CTRAN (8.9%) subcategories, 

followed by CALCO (7.3%) and CREC (6.6%). In contrast, CCLO and CCOM 

recorded the lowest inflation rates in 2008, both at -0.6%. Subsequently, the 2008 

financial crisis and resulting drop in global demand caused oil prices to fall sharply to 

a low of $61.58 in 2009. Correspondingly, aggregate inflation inched down to 0.6% in 

2009 and to 1.7% in 2010. Among the major subgroups that experienced notable drops 

in 2009 were CFOOD, CALCO, CTRANS, and CRES, at 4.1%, 6.1%, -9.4%, and 

2.9%, respectively.  

Similarly, the dramatic rise in oil prices from 2011 to 2013, the collapse in oil 

prices from 2014 to 2016, the 2020 oil price drop, and the COVID-19 pandemic had 

varying impacts on inflation across subgroups. For instance, the decline in 

international energy and commodity prices was the main cause of lower headline 

inflation in Malaysia in 2015 (Bank Negara Malaysia, 2015), primarily attributed to 

the CTRAN and CHOU categories. More recently, inflation was registered at 3.4% in 

2022, a slight increase from the preceding year’s 2.5%. This inflationary pressure was 

again driven by sustained rises in global oil prices. Overall, changes in oil prices are 

associated with disruptions in Malaysia’s aggregate CPI, which may trigger uneven 

prices hikes across different goods and services. 
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Figure 1 Oil Price and Aggregated Inflation, 2006-2022 

Source: (Bank Negara Malaysia 2023; IMF 2023)   
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a) Disaggregated inflation for CFOOD, CALCO, CCLO, and CHOU 

 

b) Disaggregated inflation for CFUR, CHEA, CTRAN, and CCOM 
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c) Disaggregated inflation for CREC, CEDU, CRES, and CMIS 

Figure 2 Disaggregated Inflation, 2006-2022 

Source: (Bank Negara Malaysia 2023) 

 

 

2. Literature Review 

There has been a growing body of literature exploring the relationship between oil 

prices and the CPI using various estimation techniques. Some prominent studies have 

examined this pass-through effect via linear autoregressive distributed lags (ARDL) 

bounds testing (Asghar and Naveed 2015; Xuan and Chin 2015; Mien 2022; Bala and 

Chin 2018). For instance, Asghar and Naveed (2015) found that both oil prices and 

exchange rates significantly affect the inflation rate in the long run in Pakistan. 

Employing the dynamic ordinary least squares (DOLS) and linear ARDL methods, 

Mien (2022) showed evidence of a pass-through effect in Cameroon, Chad, and the 

Republic of Congo, as well as a Dutch disease effect in Equatorial Guinea. 

Additionally, Xuan and Chin (2015) and Ibrahim and Said (2012) investigated the 

pass-through effect of oil prices on CPI in Malaysia, with the former differentiating 

the impacts of actual diesel prices from subsidised retail diesel prices and the latter 

incorporating both aggregated CPI and disaggregated CPI components (i.e., food, rent, 

fuel and power, transportation and communication, medical care and health). However, 

it should be noted that the linear ARDL approach assumes that pass-through effects 

are symmetric, meaning that increases and decreases in oil prices are presumed to have 

a similar impact on CPI. 
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Conversely, nonlinear autoregressive distributed lags (NARDL) bounds testing 

relaxes the assumption of symmetry by decomposing the variable (oil price) into 

positive and negative partial sums. This approach has enabled the analysis of CPI’s 

asymmetric reaction to oil price changes in various contexts, including selected net oil-

exporting and net oil-importing countries (Salisu et al. 2017), Indonesia, Malaysia, and 

Thailand (Husaini and Lean 2021), India (Pradeep 2022), and Algeria (Lacheheb and 

Sirag 2019). Salisu et al. (2017), for example, used the panel NARDL technique to 

prove that oil prices have a larger impact on inflation in net oil-importing nations than 

in net oil-exporting ones in the long run, although net exporters exhibit a relatively 

higher speed of adjustment compared to net importers. 

Lacheheb and Sirag (2019) utilised time series NARDL to reveal the long-run 

and short-run asymmetrical effect of oil prices on the CPI in Algeria, concluding that 

an increase in oil prices raises inflation while a decrease does not influence inflation. 

Likewise, according to Husaini and Lean (2021), oil price hikes have a greater impact 

on the Producer Price Index (PPI) than the CPI in Indonesia, Malaysia, and Thailand, 

whereas oil price reductions significantly affect both the CPI and PPI in Thailand. In 

Turkey, Altunöz (2022) also found evidence that the effects of crude oil price volatility 

on the CPI and PPI are asymmetrical in the long run. Alternatively, Sek (2017) 

observed both symmetric and asymmetric effects of oil prices on domestic prices 

across sectors in Malaysia. Employing ARDL and NARDL techniques, the study 

reported that in the long run, oil prices do not directly induce higher consumer prices 

across sectors; rather, they exert pass-through effects on the CPI via increased import 

prices and production costs.  

In Ghana, Ibrahim Anyars and Adabor (2023) established the asymmetrical 

influence of oil prices fluctuations on both aggregated and disaggregated inflation from 

2000 to 2021. Particularly, the asymmetrical impact was significantly greater on the 

transport subcategory of the CPI than the energy, food, and core subcategories. 

Similarly, Adeosun, Tabash, and Anagreh (2023) explored the role of global 

geopolitical risk in the link between oil prices and domestic food prices from 1995 to 

2021 in Nigeria. They applied ARDL and NARDL techniques to demonstrate that in 

the long run, both positive and negative oil price shocks directly impact food prices; 

however, in the short run, the effect of oil price shocks vary based on global 

geopolitical risk. 

Apart from ARDL and NARDL approaches, studies have incorporated vector 

autoregressive (VAR) techniques to detect the pass-through effects of oil price changes 

(Gao et al. 2014; Kpodar and Liu 2022; Rafei et al. 2022; Yilmazkuday 2021). Kpodar 

and Liu (2022), using a sample of 122 countries, examined CPI behaviour in response 

to changes in domestic fuel prices, focusing on different categories of the CPI. Their 

findings indicated that the inflation response to gasoline price shocks is smaller, more 

persistent, and broader in developing countries compared to developed ones, 

suggesting that the distributional impact of fuel price increases is progressive. In Iran, 

Rafei et al. (2022) employed a time-varying parameter VAR model to analyse data 

from 1993 to 2018, demonstrating that the pass-through effect of oil price shocks on 

inflation is time-varying. Indeed, they revealed that the positive effect of rising oil 
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prices on inflation was significantly more pronounced during the country’s sanction 

period relative to other time horizons. Additionally, Yilmazkuday (2021) decomposed 

the direct and indirect oil price pass-through impact on CPI in the U.S. They found 

that, in the long run, oil prices influence consumer prices predominantly via ex-

gasoline consumer prices. Dedeoğlu and Kaya (2014) investigated this relationship in 

Turkey using a recursive VAR model on rolling windows. Their analysis noted an 

increasing trend in the pass-through mechanism of oil prices to domestic prices, with 

the impact on PPI being nearly twice as high as that on CPI. 

Among the numerous studies that have tested oil price changes’ symmetrical 

and asymmetrical effects on domestic prices via ARDL or NARDL models, most 

appear to be biased in favour of symmetric adjustment. However, economic variables 

often display unequal adjustment patterns, suggesting that the movement toward long-

run equilibrium is best characterised as an asymmetric process (Enders and Granger 

1998). In this regard, threshold cointegration is significantly advantageous in adjusting 

positive and negative shocks to long-term equilibrium at different speeds.  

Scholars have utilised TAR and MTAR techniques to reveal how asymmetric 

adjustment can influence the complete pass-through effect of oil prices on other 

macroeconomic variables (Koh, Lim, and Sek 2020; Bala, Lee, and Maijama’a 2021; 

Chen, Lee, and Goh 2013; Rafailidis and Katrakilidis 2014). For example, Koh et al. 

(2020) explored the oil price pass-through impact on CPI and PPI in oil-importing and 

oil-exporting economies. Their threshold adjustment analysis found that oil prices have 

a greater impact on PPI inflation than on CPI inflation, with the effect on CPI inflation 

being particularly weaker in oil-importing countries. Applying a similar estimation 

technique, Bala et al. (2021) noted the asymmetric adjustment behaviour between oil 

prices and economic growth in Malaysia. Chen et al. (2013) also found asymmetric 

cointegration between oil prices and exchange rates in the Philippines using the TAR 

approach. Overall, oil prices evidently exert an asymmetric impact on macroeconomic 

activities. 

In summary, the majority of previous studies have adopted NARDL techniques 

to demonstrate that the CPI reacts asymmetrically to increases and decreases in oil 

prices. However, these studies have seemingly overlooked potential asymmetries in 

the adjustment toward long-run equilibrium, which may lead to model misspecification 

and misguided policy decisions (Paleologou 2013). This gap is crucial as economic 

variables often display unequal adjustment patterns, suggesting that the movement 

toward equilibrium is inherently an asymmetric process (Enders and Granger 1998). 

Other scholars have used threshold cointegration analysis to explore the asymmetric 

cointegration between oil prices and macroeconomic variables (see Bala et al. 2021; 

Chen et al. 2013; Koh et al. 2020; Rafailidis and Katrakilidis 2014), focusing mainly 

on the pass-through effects on aggregated CPI. Conversely, the analysis of CPI 

subcategories remains limited, particularly via MTAR models, despite recent reports 

of disaggregated CPI behaviour in response to oil price changes. Therefore, this study 

fills this gap by positing that positive and negative oil price shocks affect the CPI and 

its subcategories at different adjustment speeds toward long-run equilibrium. 
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3. Data and Methodology 

3.1 Data 

As mentioned in Section 1, the Malaysian CPI dataset can be divided into aggregated 

CPI and disaggregated CPI, the latter of which encompasses 12 subcategories: 

CFOOD, CALCO, CCLO, CHOU, CFUR, CHEA, CTRAN, CCOM, CREC, CEDU, 

CRES, and CMIS. The complete set of CPI categories, which can be obtained from 

Bank Negara Malaysia, is only available after 2005. Consequently, to ensure 

consistency, we reassigned the CPI data to the same base year (2005=100) and set 

January 2005 to December 2022 as the study period. The independent variable, oil 

price, was proxied by the Brent crude oil price (OP) in US dollars per barrel. OP data 

is a widely used benchmark for global oil pricing (Wang, Wu, and Yang 2014), 

obtainable from the International Monetary Fund (IMF 2023). All variables were 

expressed as natural logarithms. 

 

 

3.2 Unit Root Tests 

A prerequisite procedure for implementing cointegration analysis is to determine the 

integration properties of the variables studied. To do so, we performed the Augmented 

Dickey-Fuller (ADF) (Dickey and Fuller 1979; 1981) and Phillips-Perron (PP) 

(Phillips and Perron 1988) tests, which most empirical studies use to detect the 

presence or absence of a unit root. 

 

3.3 Engle-Granger Two-Stage Approach 

If the prerequisite tests reveal that both the CPI and oil price are integrations of the 

same order, the Engle-Granger two-stage approach would be used to examine the 

existence of cointegration between the two variables (Engle and Granger 1987). 

Following Koh et al. (2020) and Xuan and Chin (2015), we formulated the long-run 

relationship between oil price and CPI in Malaysia as follows:  

 

𝐶𝑃𝐼𝑡 = 𝛿0 + 𝛿1𝑂𝑃𝑡 + 𝑢𝑡      (1) 

 

∆𝑢𝑡 = 𝜌𝑢𝑡−1 + ∑ 𝜑𝑖
𝑞
𝑖=1 ∆𝑢𝑡−1 + 𝑒𝑡    (2) 

 

where δ0 and δ1 are parameter estimates. Equation (1) was estimated separately for the 

aggregated CPI and the 12 disaggregated CPIs (2005=100). Residuals from Equation 

(1) were used to test for stationarity using the ADF unit root test. However, this 

standard cointegration test suffers from a number of pitfalls. First, it may exhibit low 

power in the presence of asymmetric adjustment (Enders and Siklos 2001). Second, 

Equation (2) indicates that the cointegration among variables is symmetric (Haughton 

and Iglesias 2012). Lastly, the test assumes that the adjustment speed towards long-

run equilibrium remains constant in each time period (Esteve and Tamarit 2012). As 

such, Equation (2) would be misspecified if asymmetric adjustment exists. 
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3.4 Enders and Siklos’ MTAR Cointegration 

To address the limitations mentioned above, we employed MTAR models, which are 

designed to test asymmetric cointegration among variables (Enders and Siklos 2001). 

The MTAR specification has more robust power and size properties compared to 

symmetry adjustment (Enders and Siklos 2001). It is particularly useful and relevant 

when the adjustment shows more momentum in one direction than the other 

(Thompson 2006; Yuksel 2016; Payne and Waters 2005). The MTAR model can be 

specified in the following form: 

 

 ∆𝑢𝑡 = 𝑀𝑡𝜌1𝑢𝑡−1 + (1 − 𝑀𝑡)𝜌2𝑢𝑡−1 + ∑ 𝜗𝑖
𝑝
𝑖=1 ∆𝑢𝑡−𝑖 + 𝑒𝑡  (3)  

 

𝑀𝑡 = {
1 𝑖𝑓 ∆𝑢𝑡−1 ≥ 𝜏
0 𝑖𝑓 ∆𝑢𝑡−1 < 𝜏

}      (4) 

 

where et ~ I.I.D (0, ơ2); τ is the threshold value; and Mt is the Heaviside indicator 

function that allows the adjustment to depend on the previous period’s change in ut-1. 

In the MTAR model, if ∆𝑢𝑡−1 is above the threshold, the adjustment is 𝜌1𝑢𝑡−1; if 

∆𝑢𝑡−1 is below the threshold, the adjustment is 𝜌2𝑢𝑡−1. Following Payne (2007), we 

infer that ∆𝑢𝑡−1 ≥ 𝜏 corresponds to a decrease in oil prices relative to the CPI. On the 

other hand,  ∆𝑢𝑡−1 < 𝜏 reflects a rise in oil prices relative to the CPI. 

Based on Enders and Siklos (2001), we determined the threshold endogenously 

by identifying its consistent estimate (Chan 1993). In line with MTAR models, the 

joint F-test (F-joint) was employed to test the null hypothesis of no cointegration while 

symmetry adjustment was tested using the standard F-test (F-equality) with the null 

hypothesis of ρ1=ρ2.  

 

 

3.5 Asymmetric and Symmetric Error-Correction Models 

We further estimated error-correction models to capture the short-run and long-run 

dynamics of the MTAR’s cointegrating relationship. If there is asymmetric adjustment, 

Equations (5a) and (5b) would be applied by replacing the single symmetric error-

correction term with two asymmetric error-correction terms (Thompson 2006), as 

shown below: 

 

∆𝐶𝑃𝐼𝑡 = ∅𝑐 + 𝑀𝑡𝜌1𝑢𝑡−1 + (1 − 𝑀𝑡)𝜌2𝑢𝑡−1 + ∑ 𝛼𝑐𝑖

𝑞

𝑖=1
∆𝐶𝑃𝐼𝑡−𝑖 + 

∑ 𝛽𝑐𝑖
𝑞
𝑖=1 ∆𝑂𝑃𝑡−𝑖 + 𝑣𝑐𝑡      (5a) 

 

∆𝑂𝑃𝑡 = ∅𝑝 + 𝑀𝑡𝜌1𝑢𝑡−1 + (1 − 𝑀𝑡)𝜌2𝑢𝑡−1 + ∑ 𝛼𝑝𝑖

𝑞

𝑖=1
∆𝐶𝑃𝐼𝑡−𝑖 + 

∑ 𝛽𝑝𝑖
𝑞
𝑖=1 ∆𝑂𝑃𝑡−𝑖 + 𝑣𝑝𝑡      (5b) 
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where ρ1 and ρ2 are two asymmetric adjustment coefficients measuring the adjustment 

speeds of deviations from the long-run equilibrium.  

 

Alternatively, if the cointegration shows symmetric adjustment, the symmetric 

error correction equations would be specified as follows: 

 

∆𝐶𝑃𝐼𝑡 = ∅𝑐 + 𝜌𝑢𝑡−1 + ∑ 𝛼𝑐𝑖
𝑞
𝑖=1 ∆𝐶𝑃𝐼𝑡−𝑖 + ∑ 𝛽𝑐𝑖

𝑞
𝑖=1 ∆𝑂𝑃𝑡−𝑖 + 𝑣𝑐𝑡  

         (6a) 

 

∆𝑂𝑃𝑡 = ∅𝑝 + 𝜌𝑢𝑡−1 + ∑ 𝛼𝑝𝑖
𝑞
𝑖=1 ∆𝐶𝑃𝐼𝑡−𝑖 + ∑ 𝛽𝑝𝑖

𝑞
𝑖=1 ∆𝑂𝑃𝑡−𝑖 + 𝑣𝑝𝑡  

(6b) 
 

where ρ is the single symmetric adjustment coefficient. 

Based on the asymmetric (symmetric) error-correction models, the long-run 

causal relationship between these variables was evaluated using the statistical 

significance of the coefficient of the lagged error-correction term (ut-1). On a similar 

note, short-run causality was assessed via the statistical significance of the Wald test’s 

F-statistic, which computes the lagged differences of independent variables from the 

asymmetric (symmetric) error-correction models. 

Taking the example of Equations (5a) and (6a), the null hypothesis “H0: βc1=…= 

βcq = 0” implies that oil price does not Granger-cause aggregated CPI or disaggregated 

CPI, respectively. For Equations (5b) and (6b), the null hypothesis “H0:  αp1=…= αpq 

= 0” shows that aggregated CPI and disaggregated CPI, respectively, do not Granger-

cause the oil price. 

 

 

4. Results and Discussion 

4.1 Descriptive Statistics 

Table 1 presents the summary of descriptive statistics for all the variables over the 

study period of 2005 to 2022. The aggregated CPI ranged from 98.6 to 115.5, 

averaging 111.9 with a moderate standard deviation of 4.3. Among the disaggregated 

CPIs, CALCO exhibited the highest average of 130.5, followed by CFOOD (119.6), 

CMIS (119.3), CRES (117.0), and CTRAN (113.3). Both CALCO and CMIS 

displayed significant variation from their mean, recording standard deviations of 11.7 

and 11.0, respectively. For the regressor, the average price of OP stood at US$75.9 per 

barrel, with a range of US$26.8 to US$133.6 per barrel. 

 

4.2 Unit Root Tests 

The ADF and PP unit root tests were conducted as the first step of our cointegration 

analysis. The results at level and first difference for trend terms are presented in Table 

2. Both the ADF and PP tests suggest that the null hypothesis of a unit root could not 

be rejected in most cases, implying that all the variables (except CCLO, CTRAN, 

CCOM, and OP) were non-stationary at levels. When the variables were tested in the 
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first difference, we observed strong evidence in favour of stationary processes. 

Therefore, the results strongly indicate that the variables under consideration were 

integrated at the order of one, I(1). These findings enabled us to proceed to examine 

potential cointegration relationships among the variables.  

 

4.3 Estimation Results 

In the absence of cointegration, Chan’s (1993) method is typically used to 

endogenously search for a consistent threshold estimate (τ). This is achieved by 

arranging the values {∆𝑢𝑡} of the MTAR model in ascending order while excluding 

the smallest and largest 15%. The value resulting in the lowest residual sum of squares 

is then considered the τ. The empirical results of our MTAR-consistent cointegration 

tests are reported in Table 3. For most of the MTAR-consistent models, the Ljung-Box 

test failed to reject the null hypothesis of no residual autocorrelation for up to four and 

eight lags. However, serial correlation was confirmed for Models 3 and 5 only when 

higher lag orders of eight were used. Thus, there was convincing evidence of serial 

independence in the MTAR-consistent models. 

Moreover, the MTAR-consistent models rejected the null hypothesis of no 

cointegration (ρ1=ρ2=0) for the aggregated CPI and almost all the disaggregated CPI 

pair models, except for Model 3 (ALCO), Model 6 (CFUR), Model 10 (CREC), and 

Model 13 (CMIS). These results suggest that there was indeed a cointegrating 

relationship between the CPI subcategories and oil prices in Malaysia over the study 

period.  

Given that the two variables were cointegrated, we proceeded to examine the 

possibility of asymmetric adjustment. Based on the standard F-statistic (F-equal) 

results, the null hypothesis of symmetric adjustment (ρ1=ρ2) was rejected for Model 1 

(CPI), Model 2 (CFOOD), Model 4 (CCLO), Model 5 (CHOU), Model 9 (CCOM), 

Model 11 (CEDU), and Model 12 (CRES). Meanwhile, we failed to reject the null 

hypothesis of symmetric adjustment for Model 7 (CHEA) and Model 8 (CTRAN), 

favouring symmetric adjustment towards the long-run equilibrium for CHEA-OP and 

CTRAN-OP.  

Clearly, |𝜌1| > |𝜌2| indicates that while the adjustment process towards long-

run equilibrium is slower for rises in oil prices, it is more rapid for oil price decreases 

in relation to the aggregated CPI (Model 1), CFOOD (Model 2), CCLO (Model 4), 

CEDU (Model 11), and CRES (Model 12). On the other hand, |𝜌1| < |𝜌2| reflects that 

the reversion process towards long-run equilibrium is relatively quicker when oil 

prices are rising in relation to CHOU (Model 5) and CCOM (Model 9), whereas the 

adjustment process is slower when oil prices are falling. 

Overall, the MTAR-consistent models reveal three major findings. First, there 

is cointegration between oil prices and CPI, CFOOD, CCLO, CHOU, CHEA, CTRAN, 

CCOM, CEDU, and CRES, but no cointegration between oil prices and CALCO, 

CFUR, CREC, and CMIS. Second, the adjustment process towards long-run 

equilibrium is asymmetric; it is relatively faster when oil prices are falling in relation 

to CPI, CFOOD, CCLO, CEDU, and CRES, but is only faster when oil prices are rising 
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in relation to CHOU and CCOM. Third, the adjustment towards long-run equilibrium 

is symmetric for CHEA and oil prices and CTRAN and oil prices. 

Table 4 reports the results of the asymmetric error-correction models. The 

Breusch–Godfrey LM tests confirmed that all models were free of serial correlation in 

residuals, except for Model 4a and Model 6a. The error-correction terms’ coefficients 

in Equation (5a) were also statistically significant, negative, and within the unit 

interval range, in line with past empirical studies (Arize, Malindretos, and Ghosh 2015). 

However, most of the error correction terms in Equation (5b) were statistically 

insignificant, indicating that oil price is weakly exogenous to the respective CPI 

categories. The adjustment coefficients (ρ1 and ρ2) were noticeably dissimilar as well, 

confirming the findings of the MTAR-consistent model (Table 3). Specifically, the 

speed of adjustment ρ1 was significantly larger in absolute terms relative to the speed 

of adjustment ρ2 for Model 1a (CPI), Model 2a (CFOOD), Model 3a (CCLO), Model 

6a (CEDU), and Model 7a (CRES). For Model 4a (CHOU) and Model 5a (CCOM), 

the speed of adjustment (ρ2) was larger in absolute terms compared to the speed of 

adjustment (ρ1).  

Based on the asymmetric error-correction model results, the Granger causality 

Wald tests suggest: (a) bidirectional causation between CEDU and oil prices; (b) 

unidirectional causality from CPI to oil prices and from CFOOD to oil prices; (c) 

unidirectional causality from oil prices to CCOM; (d) no Granger causality between 

CCLO and oil prices, CHOU and oil prices, and CRES and oil prices. 

Next, Table 5 presents the results of symmetric error-correction. The Breusch-

Godfrey LM tests indicated that only Model 8a suffered from serial correlation. The 

error-correction coefficients in Model 8a (CHEA) and Model 9a (CTRAN) were 

highly significant at the 1% level and carried the expected sign. Contrary to this, the 

error-correction coefficients in the oil price equations (Equation 6(b)) were statistically 

insignificant, implying that the oil price is weakly exogenous. Moreover, the Granger 

causality results supported the presence of unidirectional causality from CHEA to oil 

prices as well as bidirectional causality between CTRAN and oil prices in the short-

run. 

These findings are consistent with those of Bala et al. (2021) and Xuan and Chin 

(2015) in Malaysia. According to Bala et al. (2021), economic growth demonstrates 

asymmetric adjustment in response to oil price changes. Xuan and Chin (2015), 

furthermore, suggested that actual diesel prices have a pass-through effect on 

aggregated CPI, CFOOD, CFUR, and CTRAN. They also observed the pass-through 

effect of subsidised retail diesel prices on aggregated CPI, CFUR, and CCOM. Since 

CFOOD accounts for almost one-third (i.e., 29.5%) of the overall CPI (Bank Negara 

Malaysia 2023), oil price rise is likely to exert pressure on this subcategory, especially 

because oil is utilised in modern agriculture for farm machinery and transportation 

(Xuan and Chin 2015). In Malaysia, lower income groups tend to experience higher 

inflation than higher income groups (Bank Negara Malaysia 2015), as they spend more 

on food and less on transport, healthcare, education, and discretionary expenditure. 

This makes lower income groups highly vulnerable to changes in prices. Also, if 

energy demand is inelastic, consumers may reduce their expenditure on non-energy 
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related goods and services when oil prices rise unexpectedly (Edelstein and Kilian 

2009). 

In summary, the results of the Granger causality tests in Table 4 and Table 5 

prove that in the short-run: (a) CEDU and oil prices and CTRAN and oil prices have 

bidirectional causality; (b) CPI, CFOOD, and CHEA Granger-cause oil prices; (c) oil 

price Granger-causes CCOM; and (d) there is no Granger causality between CCLO 

and oil prices, CHOU and oil prices, and CRES and oil prices. 

 

Table 1 Summary Statistics  

  CPI CFOOD CALCO CCLO 

Mean 111.9 119.6 130.5 95.5 

Maximum 115.5 125.5 142.7 100.8 

Minimum 98.6 98.6 98.1 93.9 

Std. Dev. 4.3 7.8 11.7 1.7 

N 216 216 216 216 

  CHOU CFUR CHEA CTRAN 

Mean 105.9 107.6 108.4 113.3 

Maximum 108.0 109.5 111.0 139.4 

Minimum 99.4 99.2 98.9 95.7 

Std. Dev. 2.2 3.1 3.2 5.0 

N 216 216 216 216 

  CCOM CREC CEDU CRES 

Mean 96.6 105.9 108.4 117.0 

Maximum 100.5 107.3 110.4 121.8 

Minimum 96.0 99.8 99.7 98.2 

Std. Dev. 1.1 2.4 3.2 6.3 

N 216 216 216 216 

  CMIS OP     

Mean 119.3 75.9     

Maximum 137.3 133.6   
Minimum 99.5 26.8   
Std. Dev. 11.0 24.9   
N 216 216     
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Table 2 Unit Root Tests 

ADF 

  CPI   CFOOD   CALCO   CCLO   

L -3.0472  -2.1279  -2.879  -3.3024 * 

FD -7.9405 *** -13.4474 *** -14.8773 *** -7.776 *** 

  CHOU   CFUR   CHEA   CTRAN   

L -3.0716  -2.0915  -3.0229  -4.6304 *** 

FD -9.3593 *** -4.5243 *** -9.6691 *** -8.7175 *** 
 CCOM   CREC   CEDU   CRES   

L -6.6596 *** -1.4552  -2.9444  -2.8931  

FD -4.9741 *** -15.6601 *** -6.0143 *** -12.152 *** 

  CMIS   OP           

L -1.7560  -3.3569 *     
FD -14.0573 *** -9.0222 ***         

PP  
  CPI   CFOOD   CALCO   CCLO   

L -2.8124  -2.1299  -2.6681  -5.0738 *** 

FD -13.8797 *** -13.4326 *** -19.5587 *** -71.3282 *** 

  CHOU   CFUR   CHEA   CTRAN   

L -2.5606  -2.0057  -2.6402  -4.4138 *** 

FD -21.4923 *** -14.5588 *** -16.9659 *** -13.1831 *** 
 CCOM   CREC   CEDU   CRES   

L -6.8113 *** -1.4272  -2.0038  -2.8032  

FD -13.0638 *** -15.6519 *** -14.5165 *** -17.648 *** 

  CMIS   OP           

L -1.7917  -2.6912      
FD -14.0465 *** -9.2769 ***         

Notes: *** and * denote significance at the 1% and 10% levels, respectively. L and FD refer to level and first-

difference. ADF and PP unit root tests include trend. The optimal lag lengths for ADF unit root tests are 
determined by the Akaike information criterion (AIC) with maximum lag order of 8. The bandwidths for PP unit 

root tests are determined by Newey-West Bartlett kernel.  
Source: Source: Authors’ calculations.   
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Table 3 MTAR-Consistent Cointegration Tests 
  Model 1 Model 2 Model 3 

 CPI CFOOD CALCO 

  Coeff. t-stat.   Coeff. t-stat.   Coeff. t-stat.   

ρ1 -0.0737 -3.4374 *** -0.0346 -3.2259 *** -0.0626 -2.9942 *** 

ρ2 -0.0215 -1.6003  -0.0078 -0.6831  -0.0218 -0.7571  

Q(4) 0.2707   1.1035   1.9901   

Q(8) 8.3021   8.0180   37.8750  *** 

AIC -7.3172   -6.9277   -4.8001   

SC -7.2540   -6.8646   -4.7048   

Lags 2   2   4   

τ 0.0035   0.0020   -0.0018   

F-equal 4.2225 **  2.9555 *  1.3040   

F-joint 7.2236 **   5.4292 *   4.7976     

  Model 4 Model 5 Model 6 
 CCLO CHOU CFUR 

  Coeff. t-stat.   Coeff. t-stat.   Coeff. t-stat.   

ρ1 -0.1757 -4.7050 *** 0.0090 0.3072  -0.0341 -2.9178 *** 

ρ2 -0.0310 -1.1829  -0.0506 -3.2506 *** -0.0085 -1.1867  

Q(4) 1.9245   6.7414   0.9830   

Q(8) 10.8380   37.1910  *** 12.6480   

AIC -7.8345   -8.1404   -9.2950   

SC -7.7392   -8.0773   -9.1340   

Lags 4   2   8   

τ 0.0054   0.0025   0.0017   

F-equal 10.1784 ***  3.2284 *  3.4939 *  

F-joint 11.7037 ***   5.3275 *  4.9488   

  Model 7 Model 8 Model 9 
 CHEA CTRAN CCOM 

  Coeff. t-stat.   Coeff. t-stat.   Coeff. t-stat.   

ρ1 -0.0189 -1.3553  -0.1335 -2.7344 *** -0.0199 -2.1111 ** 

ρ2 -0.0479 -3.0089 *** -0.3166 -3.3472 *** -0.0466 -4.0276 *** 

Q(4) 4.3681   0.1467   1.0782   

Q(8) 11.2020   0.7125   8.9874   

AIC -7.9946   -5.2882   -11.1670   

SC -7.9315   -5.1272   -11.0391   

Lags 2   8   6   

τ 0.0010   -0.0035   -0.0009   

F-equal 1.8689   2.6726   3.5653 *  

F-joint 5.4441 *  10.7206 ***  9.5659 ***   
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  Model 10 Model 11 Model 12 
 CREC CEDU CRES 

  Coeff. t-stat.   Coeff. t-stat.   Coeff. t-stat.   

ρ1 -0.0320 -3.0594 
**
* 

-0.0363 -3.2534 
**
* 

-0.0738 -3.9670 
**
* 

ρ2 -0.0047 -0.4551  -0.0118 -1.6370  -0.0179 -1.8645 * 

Q(4) 3.6674   1.9563   2.1095   

Q(8) 5.0157   6.1675   5.3943   

AIC -9.2127   -9.0593   -7.1575   

SC -9.1495   -8.9962   -7.0944   

Lags 2   2   2   

τ 0.0000   0.0011   0.0042   

F-equal 3.4813 *  3.4512 *  7.1634 ***  

F-joint 4.7843     6.5741 **   9.5574 ***   

  Model 13       
 CMIS       
  Coeff. t-stat.         
ρ1 -0.0163 -1.9883 **       
ρ2 -0.0008 -0.1559  

      
Q(4) 4.8201   

      
Q(8) 8.2431   

      
AIC -7.3598   

      
SC -7.2967   

      
Lags 2   

      
τ 0.0041   

      
F-equal 2.4791   

      
F-joint 1.9889                 

Notes: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. The critical values are 

obtained from Enders and Siklos (2001). Lags denote the optimal lag length selected by the AIC with a maximum 
lag order of 8. Q(4) and Q(8) are the Ljung-Box statistics that test if the first four and eight residual 

autocorrelations are jointly equal to zero. F-equal and F-joint refer to the null hypotheses H0:ρ1=ρ2 and H0:ρ1=ρ2=0, 

respectively. In addition to the MTAR-consistent cointegration tests, this study also performed the Engle-Granger 
(EG) and MTAR cointegration tests. Both results are not reported in the table to save space.  

Source: Authors’ calculations.   
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Table 4 Asymmetric Error-Correction Models 
  τ=0.0035 

 Model 1a Model 1b 

 ΔCPI ΔOP 

  Coeff t-stat   Coeff t-stat   

Constant 0.0011 2.7632 *** 0.0043 0.7167  

Itut-1 -0.1057 -4.8957 *** -0.3872 -1.2580  

(1-It)ut-1 -0.0291 -2.0071 ** -0.1606 -0.7998  

WS1 5.4542 ***  8.0805 ***  

WS2 2.3715   17.6386 ***  

Adj. R2 0.1428   0.1754   

AIC -7.4501   -2.0394   

SC -7.3378   -1.9441   

LM(2) 0.2597   1.3808   

  τ=0.0020 

 Model 2a Model 2b 

 ΔCFOOD ΔOP 

  Coeff t-stat   Coeff t-stat   

Constant 0.0015 2.9586 *** 0.0054 0.8646  

Itut-1 -0.0476 -4.4249 *** -0.1039 -0.7704  

(1-It)ut-1 -0.0115 -0.9783  -0.0820 -0.5232  

WS1 2.8197 *  4.0846 **  

WS2 1.5945   8.2466 ***  

Adj. R2 0.0898   0.1797   

AIC -7.0861   -2.0191   

SC -6.9898   -1.8581   

LM(2) 0.4263   1.2754   

  τ=0.0054 

 Model 3a Model 3b 

 ΔCCLO ΔOP 

  Coeff t-stat   Coeff t-stat   

Constant -0.0007 -2.3508 ** 0.0008 0.1302  

Itut-1 -0.2090 -6.2028 *** 0.2488 0.3634  

(1-It)ut-1 -0.0332 -1.2766  -0.2197 -0.4209  

WS1 71.3090 ***  1.5748   

WS2 2.1152   14.0659 ***  

Adj. R2 0.6657   0.1545   

AIC -8.0928   -2.0070   

SC -7.9489   -1.8950   

LM(2) 2.3598   1.3248   
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  τ=0.0025 

 Model 4a Model 4b 

 ΔCHOU ΔOP 

  Coeff t-stat   Coeff t-stat   

Constant 0.0010 3.8593 *** 0.0031 0.5223  

Itut-1 -0.0576 -1.8839 * -1.3569 -2.1664 ** 

(1-It)ut-1 -0.0733 -4.6289 *** 0.2618 0.7771  

WS1 9.0146 ***  1.4810   

WS2 1.8949   19.3010 ***  

Adj. R2 0.2475   0.1674   

AIC -8.3774   -2.0322   

SC -8.2003   -1.9372   

LM(2) 34.7809 ***  1.2573   

  τ=-0.0009 

 Model 5a Model 5b 

 ΔCCOM ΔOP 

  Coeff t-stat   Coeff t-stat   

Constant -0.0003 -5.2829 *** -0.0014 -0.2141  

Itut-1 -0.0505 -5.3204 *** -0.5703 -0.5929  

(1-It)ut-1 -0.0660 -6.9401 *** 0.0715 0.0732  

WS1 9.0672 ***  1.6248   

WS2 2.9637 *  19.4621 ***  

Adj. R2 0.3725   0.1450   

AIC -11.8368   -2.0032   

SC -11.6597   -1.9079   

LM(2) 0.3524   1.8824   

  τ=0.0011 

 Model 6a Model 6b 

 ΔCEDU ΔOP 

  Coeff t-stat   Coeff t-stat   

Constant 0.0008 4.2752 *** 0.0015 0.2338  

Itut-1 -0.0519 -4.8511 *** 0.2062 0.5320  

(1-It)ut-1 -0.0256 -3.3189 *** -0.1246 -0.4996  

WS1 3.7481 ***  2.5153 *  

WS2 3.8642 *  21.0179 ***  

Adj. R2 0.1621   0.1563   

AIC -9.3315   -2.0144   

SC -9.1705   -1.9036   

LM(2) 7.7115 **  0.7013   
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  τ=0.0042 

 Model 7a Model 7b 

 ΔCRES ΔOP 

  Coeff t-stat   Coeff t-stat   

Constant 0.0012 0.2326   0.0027 0.4505   

Itut-1 -0.1128 -5.9478 *** -0.2460 -0.9845  

(1-It)ut-1 -0.0273 -2.6724 *** -0.0105 -0.0813  

WS1 3.7139 ***  2.5520   

WS2 0.0065   19.0235 ***  

Adj. R2 0.1615   0.1513   

AIC -7.3799   -2.0131   

SC -7.2350   -1.9181   

LM(2) 3.8573     1.4156     
Notes: ***, **, and * denote significance at the 1%, 5%, and 10% levels. τ is the tau value. LM(2) is the Breusch–

Godfrey LM test for serial correlation with two lags. WS1 and WS2 correspond to the Wald statistic for the joint 

significance of all lagged values of changes in the CPI and OP, respectively.  
Source: Authors’ calculations.  

 

 

Table 5 Symmetric Error-Correction Models 
  Model 8a Model 8b 

 ΔCHEA ΔOP 

  Coeff t-stat   Coeff t-stat   

Constant 0.0022 0.6015  0.0049 0.8019  

ut-1 -0.0553 -4.7731 *** -0.1779 -0.8098  

WS1 5.3628 ***  3.2323 **  

WS2 0.9932   19.7036 ***  

Adj. R2 0.1373   0.1645   

AIC -8.1594   -2.0263   

SC -7.9823   -1.9309   

LM(2) 15.7482 ***  2.3916   

  Model 9a Model 9b 

 ΔCTRAN ΔOP 

  Coeff t-stat   Coeff t-stat   

Constant 0.0014 1.2285   0.0035 0.5894   

ut-1 -0.1740 -4.8517 *** -0.2644 -1.4449  

WS1 5.8361 ***  6.2375 ***  

WS2 2.8869 *  9.0600 ***  

Adj. R2 0.1824   0.2228   

AIC -5.3489   -2.0872   

SC -5.2365   -1.9589   

LM(2) 0.1833     1.1641     
Notes: *** and * denote significance at the 1% and 10% levels, respectively. LM(2) is the Breusch-Godfrey LM 

test for serial correlation with two lags. WS1 and WS2 correspond to the Wald statistic for the joint significance of 

all lagged values of changes in the CPI and OP, respectively.  

Source: Authors’ calculations.  
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4.4 Speed of adjustment  

Table 6 summarises the adjustment coefficients based on Table 4 and Table 5. We 

noted that ρ1 was significantly larger in absolute terms relative to ρ2 for CPI, CFOOD, 

CCLO, CEDU, and CRES. The national CPI was found to adjust rapidly to the long-

run equilibrium paths (speed of adjustment is about 10.6% monthly) for a fall in oil 

prices but converts slowly in response to rising oil prices (about 2.9% a month). For 

the CPI subcategories, the results reveal that the adjustment speeds of CFOOD, CCLO, 

CEDU, and CRES are faster when oil prices are falling than when they are rising. The 

estimated error-correction coefficients further suggest that when oil prices fall, about 

4.8%, 20.9%, 5.2%, and 11.3% of CFOOD, CCLO, CEDU, and CRES deviations from 

their long-run equilibrium are corrected each month; meanwhile, when oil prices rise, 

the convergence of CEDU and CRES to the long-run equilibrium is adjusted by about 

2.6% and 2.7% each month. Conversely, the adjustment process towards long-run 

equilibrium is relatively faster when oil prices are rising in relation to CHOU (7.3% 

per month) and CCOM (6.6% per month), while adjustment is slower when oil prices 

are falling. In other words, CHOU and CCOM take a longer time to converge to long-

run equilibrium when oil prices decrease. 

Compared to the asymmetric error-correction models, the adjustment process 

for CHEA and CTRAN as a result of disequilibrium was shown to be symmetric. 

CHEA and CTRAN adjust towards long-run equilibrium with a speed of about 5.5% 

and 17.4% per month, respectively. Overall, we conclude that the CPI and its 

subcategories adjust back to equilibrium at varying speeds, corroborating previous 

studies. For example, Xuan and Chin (2015) noted that the Malaysian CPI converges 

to the long-run equilibrium in one year, adjusting by about 22.11% for the actual diesel 

price and 19.01% for the subsidised retail diesel price. According to Ibrahim and Said 

(2012), moreover, the adjustment speed for CFOOD is quicker than the CPI in 

Malaysia, with CFOOD’s convergence to long-run equilibrium corrected by about 55% 

the next year compared to the CPI’s 31%. Another study reported the annual 

adjustment speed of the CPI to range between 36.9% and 56.8% for the ARDL model 

and between 27.8% and 73.8% for the NARDL model (Sek 2017). 

 

Table 6 Adjustment Coefficients 
Model DV ρ1  ρ2   

Model 1a ΔCPI -0.1057 *** -0.0291 ** 

Model 2a ΔCFOOD -0.0476 *** -0.0115  
Model 3a ΔCCLO -0.2090 *** -0.0332  

Model 4a ΔCHOU -0.0576 * -0.0733 *** 

Model 5a ΔCCOM -0.0505 *** -0.0660 *** 

Model 6a ΔCEDU -0.0519 *** -0.0256 *** 

Model 7a ΔCRES -0.1128 *** -0.0273 *** 

Model DV ρ       

Model 8a ΔCHEA -0.0553 ***     

Model 9a ΔCTRAN -0.1740 ***     
Notes: ***, **, and * denote significant at the 1%, 5%, and 10% levels. DV is the dependent variable. ρ, ρ1, and 

ρ2 are the adjustment coefficients.  

Source: Authors’ calculations 
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5. Conclusion 

This study explored the asymmetric adjustment of the CPI in Malaysia as a result of 

oil price changes from January 2005 to December 2022. Using MTAR cointegration 

tests, the CPI was assessed in both aggregated form and disaggregated form containing 

12 subcategories. Both the MTAR and MTAR-consistent models yielded 

quantitatively similar results; however, the MTAR-consistent model was preferred due 

to its lower Akaike Information Criterion. 

The major findings of this study are as follows: First, we confirm the existence 

of a cointegrating relationship between oil prices and the CPI in Malaysia. For the CPI 

subcategories, a long-run equilibrium relationship was observed for CFOOD, CCLO, 

CHOU, CHEA, CTRAN, CCOM, CEDU, and CRES in response to oil prices. 

However, no long-run equilibrium relationship was found for CALCO, CFUR, CREC, 

and CMIS when paired with oil prices. Second, the study provides compelling 

evidence that both aggregated CPI and disaggregated CPI, in relation to oil prices, 

adjust asymmetrically to the threshold value. The disaggregated CPI categories that 

undergo asymmetric adjustment are CFOOD, CCLO, CHOU, CCOM, CEDU, and 

CRES, while symmetric adjustment occurs for the CHEA and CTRAN. Third, the CPI 

subcategories return to equilibrium at varying speeds. The national CPI and four CPI 

subcategories (CFOOD, CCLO, CEDU, and CRES) adjust more quickly to their long-

run equilibrium when oil prices decrease as opposed to when they increase. Conversely, 

CHOU and CCOM correct deviations from the equilibrium more rapidly during 

increases in oil prices instead of decreases. Meanwhile, CHEA and CTRAN converge 

to the long-run equilibrium at a similar speed.  

Overall, there are significant differences in adjustment speeds between 

aggregated CPI and disaggregated CPI categories in Malaysia. The CPIs swiftly return 

to their long-run equilibrium when oil prices are decreasing, rather than increasing, 

and exhibit greater rigidity below the threshold level. This indicates that consumers of 

disaggregated CPIs respond to oil price changes far more heterogeneously, potential 

stemming from the CFOOD, CCLO, CHOU, CCOM, CEDU, and CRES categories.  

These findings point to the complexity of adopting a monetary policy stance 

due to the differing adjustment speeds between overall CPI and the CPI subcategories 

when oil prices fluctuate. Since central banks often use the CPI as a key indicator in 

policymaking, we assert that considering the CPI’s asymmetric adjustment behaviour 

in relation to oil prices is crucial for formulating appropriate monetary policies in 

Malaysia. Notably, a forward-looking approach may be necessary, wherein central 

banks analyse the factors driving asymmetry and how these effects are likely to unfold 

over time. This involves assessing pass-through effects, supply chain dynamics, and 

market structure to gauge potential inflationary pressures and adjust monetary policy 

pre-emptively. The asymmetric adjustment of crude oil prices to the CPI also 

underscores the importance of energy policy. Governments may need to develop 

strategies to mitigate the impact of oil price fluctuations on consumers, such as by 

promoting energy diversification, investing in renewable energy sources, or 

implementing mechanisms to stabilise fuel prices.  
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Additionally, sharp hikes in crude oil prices typically lead to higher 

transportation and production costs, which can affect various sectors of the economy. 

In such cases, central banks may respond by raising interest rates to curb inflationary 

pressures resulting from escalating consumer prices. The pass-through effect, wherein 

changes in oil prices are reflected in higher prices for goods and services, can vary 

based on factors such as the intensity of competition in different industries, the 

flexibility of pricing mechanisms, and the availability of substitutes. In some instances, 

changes in oil prices may have a limited impact on the CPI if businesses absorb part 

of the cost increase, particularly in competitive markets.  As such, governments might 

consider fiscal measures to counter the asymmetric effects on the CPI. In times of high 

oil prices, policymakers could implement targeted subsidies or tax breaks to cushion 

the impact on consumers. Conversely, during periods of low oil prices, they may need 

to adjust tax policies to maintain revenue streams and fund essential public services.  

Moreover, since oil prices are often denominated in US dollars, fluctuations in 

exchange rates can influence the asymmetrical adjustment of the CPI. If the local 

currency depreciates against the US dollar, it can amplify the impact of rising oil prices 

on imported goods, contributing to higher consumer prices. Conversely, a stronger 

local currency may mitigate the pass-through effect, particularly for countries that are 

net oil importers. Lastly, the application of asymmetric adjustment is currently limited 

to the 12 disaggregated CPIs. Future studies may explore the application of asymmetric 

adjustment to both the headline and core CPIs in response to oil price changes. 
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